A new expression for harmonic oscillator brackets

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 112131
(http://iopscience.iop.org/0305-4470/11/10/527)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on $30 / 05 / 2010$ at 15:14

Please note that terms and conditions apply.

Corrigenda

A new expression for harmonic oscillator brackets

Dobeš J 1977 J. Phys. A: Math. Gen. 10 2053-9
Equation (6) should read as follows

$$
\left\langle n l N L ; \lambda \mid n_{1} l_{1} n_{2} l_{2} ; \lambda\right\rangle_{D}=\frac{\sqrt{ } \pi}{(1+D)^{2 l}} \sum_{m=0}^{l} Q_{m} T_{m}
$$

Non-linear wave equations in a curved background space

Radmore P M and Stephenson G 1978 J. Phys. A: Math. Gen. 11 L149-52
On p L150, equations (14), (15) and (16) should read as follows:

$$
\begin{gather*}
\frac{E_{\alpha}}{4 \pi}=\int_{\alpha r_{+}}^{\infty}\left(r^{2}-2 m \alpha r+e^{2} \alpha^{2}\right) \frac{1}{\alpha}\left(\frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r+\int_{\alpha r_{+}}^{\infty} f(\Phi) \frac{r^{2}}{\alpha^{3}} \mathrm{~d} r . \tag{14}\\
\frac{1}{4 \pi} \frac{\mathrm{~d} E_{\alpha}}{\mathrm{d} \alpha}=\int_{\alpha r_{+}}^{\infty}\left(-2 m r+2 e^{2} \alpha\right) \frac{1}{\alpha}\left(\frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r+\int_{\alpha r_{+}}^{\infty}\left(r^{2}-2 m \alpha r+e^{2} \alpha^{2}\right)\left(-\frac{1}{\alpha^{2}}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r \\
+\int_{\alpha r_{+}}^{\infty} f(\Phi)\left(-\frac{3 r^{2}}{\alpha^{4}}\right) \mathrm{d} r-\left.\frac{r_{+}^{3}}{\alpha} f(\Phi)\right|_{r=\alpha r_{+}} \tag{15}\\
\left.\frac{1}{4 \pi} \frac{\mathrm{~d} E_{\alpha}}{\mathrm{d} \alpha}\right|_{\alpha=1}=-I_{1}-3 I_{2}+I_{3}-\left.r_{+}^{3} f(\Phi)\right|_{r=r_{+}} \tag{16}
\end{gather*}
$$

